A Unique Voltage Sensor Sensitizes the Potassium Channel AKT2 to Phosphoregulation

نویسندگان

  • Erwan Michard
  • Benoît Lacombe
  • Fabien Porée
  • Bernd Mueller-Roeber
  • Hervé Sentenac
  • Jean-Baptiste Thibaud
  • Ingo Dreyer
چکیده

Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K(weak) channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of +100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique K(weak) gating. Instead, a lysine residue in S4, highly conserved among all K(weak) channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward-rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the K(in) channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is approximately 6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2

The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a 'potassium battery', providing additional energy for transmembrane transport processes. Knowledge ...

متن کامل

AKT2/3 Subunits Render Guard Cell K+ Channels Ca2+ Sensitive

Inward-rectifying K+ channels serve as a major pathway for Ca2+-sensitive K+ influx into guard cells. Arabidopsis thaliana guard cell inward-rectifying K+ channels are assembled from multiple K+ channel subunits. Following the recent isolation and characterization of an akt2/3-1 knockout mutant, we examined whether the AKT2/3 subunit carries the Ca2+ sensitivity of the guard cell inward rectifi...

متن کامل

An extracellular domain of the accessory β1 subunit is required for modulating BK channel voltage sensor and gate

A family of tissue-specific auxiliary β subunits modulates large conductance voltage- and calcium-activated potassium (BK) channel gating properties to suit their diverse functions. Paradoxically, β subunits both promote BK channel activation through a stabilization of voltage sensor activation and reduce BK channel openings through an increased energetic barrier of the closed-to-open transitio...

متن کامل

Voltage Clamp Fluorimetry Reveals a Novel Outer Pore Instability in a Mammalian Voltage-gated Potassium Channel

Voltage-gated potassium (Kv) channel gating involves complex structural rearrangements that regulate the ability of channels to conduct K(+) ions. Fluorescence-based approaches provide a powerful technique to directly report structural dynamics underlying these gating processes in Shaker Kv channels. Here, we apply voltage clamp fluorimetry, for the first time, to study voltage sensor motions i...

متن کامل

Design of Novel Drugs (P3TZ, H2P3TZ, M2P3TZ, H4P3TZ and M4P3TZ) Based on Zonisamide for Autism Treatment by Binding to Potassium Voltage-gated Channel Subfamily D Member 2 (Kv4.2)

The present research article relates to the discovery of the novel drugs based on Zonisamide to treatment of autism disease. In first step, the electronic properties, reactivity and stability of the said compound are discussed. To attain these properties, the said molecular structure is optimized using B3LYP/6-311++G(d,p) level of theory at room temperature. The frontier molecular orbitals (FMO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2005